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Abstract

The effect of structure size on the nominal strength of closed-cell PVC foam (Divinycell H100) is investigated ex-

perimentally, theoretically and numerically. Two types of size effect are considered––Type I, characterizing failure of

structures with large cracks or notches, and Type II, characterizing failure at crack initiation. Geometrically similar

single edge-notched prismatic specimens of cross section widths 6.35, 43.9 and 305 mm, are tested under tension. The

results are shown to agree with Ba�zzant�s law for type I energetic (deterministic) size effect derived by asymptotic

matching of a solution by equivalent linear elastic fracture mechanics for large sizes and plastic crack solution for small

sizes (in the derivation, the statically indeterminate size-dependent lateral shift of the axial load resultant due to ro-

tational end restrain is taken into account). Fitting this law, previously verified for many quasibrittle materials, to the

test results furnishes the values of the fracture energy of the foam as well as the characteristic size of the fracture process

zone of foam. The size effect method of measuring the fracture characteristics of foam is further supported by analysis

of recent notched beam tests of Zenkert and B€aacklund. Furthermore, it is shown that compressed V-notched specimens

exhibit no size effect. Subsequently, the size effect of Type II is studied using previous test data of Fleck, Olurin and co-

workers for dissimilar long holed panels having different width and different diameter-width ratios. An asymptotic

matching formula for this type of size effect (similar to a previously derived formula for kink band failure of fiber

composites) is set up and is shown capable of matching the test data well. But its verification as a predictive tool cannot

yet be claimed because of inaccurate asymptotic properties of the available energy release function. Finally, the size

effect of Type I is analyzed using the eigenvalue method for the cohesive crack model and the numerical results are

shown to agree again with both Ba�zzant�s size effect law and the test results.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Because of their very high stiffness-weight and strength-weight ratios, good thermal insulation, high

energy absorption and other advantages, the use of sandwich structures in aircraft, ship building and
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mechanical engineering is increasing. The cores of sandwich plates are often light cellular materials such as

a closed-cell rigid polymeric foam made from polyvinyl chloride (PVC), polystyrene (PS) or polyurethane

(PUR).

Sandwich structures have been investigated systematically since the 1950s. Several basic mechanisms of
failure have been identified (e.g., Triantafillou and Gibson, 1987; Gibson and Ashby, 1997). The skins may

fail by buckling delamination with fracture or by buckling triggered by prior indentation. They may also fail

by quasiplastic extension with distributed damage, or by compressive or tensile fracture of the skin. The core

may fail by plastic deformation or by fracture. The overall failure may be triggered by any one of these

mechanisms, and a complete failure typically involves a combination of failures in both the core and the skins.

A difficult aspect of sandwich failure is the development of distributed damage and its localization. This

phenomenon has been shown to cause large deterministic size effects in other quasibrittle materials, and by

analogy the same must be expected for sandwich structures. With this motivation, a microplane constitutive
model for a rigid closed-cell polymeric foam and a finite element model for the nonlinear deformations of a

sandwich plate have been developed at Northwestern University (Ba�zzant and Brocca, 2000; Brocca et al.,

2001). The computed load–deflection curves of a sandwich beam were found to exhibit a distinct deter-

ministic size effect.

The present paper deals with a closed-cell vinyl foam. In classical works, the failure of this material in

tension or compression has usually been described as ductile, involving a yield plateau followed by locking,

and failure criteria expressed in terms of stresses have been used (e.g., Gibson and Ashby, 1997; Shipsha

et al., 2000; Gdoutos et al., 2001). This kind of failure can exhibit no size effect.
Such ductile response, however, does not take place when high tensile stress concentrations exist, in-

duced for example by notches in laboratory specimens, or various structural holes or accidental damage of

real structures. In such a case, the failure of the foam may be brittle, as revealed most clearly by the notched

specimen tests of Zenkert (1989) and Zenkert and B€aacklund (1989) (and partly also suggested by holed

panel tests of Olurin et al. (2001) and Fleck et al. (2001)). The brittle failure must generally be expected to

exhibit a pronounced size effect (Ba�zzant and Planas, 1998; Ba�zzant, 2002). A size effect was revealed already

in 1989 by Zenkert and B€aacklund�s tests of notched foam beams.

However, the size effect in foam, which is important for extrapolating laboratory test data to very large
structures such as large ships, has not been adequately explored. Especially, the size effect in foam has not

been described analytically by simple formulae which would be easily usable in design and which could be

exploited for convenient identification of material fracture properties from the measured size effect on the

load capacities of notched foam specimens. To present such analytical formulae is the objective of the

present study.

This objective is made easy by analogy with previous studies of the size effects in quasibrittle materials.

This paper will explore whether the energetic size effect law for quasibrittle failure of structures with large

cracks, proposed by Ba�zzant (1984), extended by Ba�zzant and Kazemi (1990), and verified for concrete,
rocks, sea ice, ceramics, fiber composites and other quasibrittle materials (Ba�zzant and Planas, 1998; Ba�zzant,
2002), can be applied to rigid polymeric foam and used for material parameter identification. The law of

size effect for failures at fracture initiation will be also studied.
2. Experimental setup, fracture tests and results

Fracture was tested on PVC (Divinycell H100) foam with nominal density 100 kg/m3, which is closed-cell

rigid foam widely used for sandwich cores. All the specimens were cut from one and the same plate

(supplied by Diab Inc., DeSoto, Texas) and had the same thickness b ¼ 25:40 mm. To determine the size

effect in tensile (model I) fracture, specimens geometrically similar in two dimensions with length-to-width
ratio 5:2 were selected. Their widths were D ¼ 6:35, 43.94 and 304.80 mm (Fig. 1). Notches of width 1.00



Fig. 1. Foam specimens geometrically similar in two dimensions for tensile fracture test (Divinycell H100).
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mm and depth 0.4D were cut with a band saw. The tip of the notch was sharpened by a blade having the
thickness of 0.25 mm.

In addition, compressive tests were carried out using the same specimens but only of the middle size. To

avoid the opposite faces of the notch from getting in contact before the maximum compressive load is

reached, the notch was widened with a band saw to a wedge shape of width 25 mm at the notch mouth. The

notch tip was sharpened by a razor blade. The ends of specimens were glued by epoxy to very stiff steel

platens which were gripped in the loading machine, with any rotation of the ends prevented.

The specimens were loaded in tension in a closed-loop testing machine (Instron-8500) (Fig. 2). To

minimize the viscoelastic effects due to differences in the loading rate, the displacement rate of the platens
Fig. 2. Test set-up for a median size specimen in tensile fracture test.
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was uniform throughout the test and was chosen such that the specimens of any size would reach the

maximum load within about 5 min. The displacements were measured by LVDT gages mounted across the

notch mouth (Fig. 2) spanning, in the case of tension tests, a base length of 11.50 mm. The geometries and

peak loads for all the tensile and compressive specimens are listed in Table 1, and the typical load–
displacement curves are shown in Fig. 3.

The choice of the test specimen and loading setup was guided by the following two considerations:

1. One reason for cutting notches was to ensure the failure to begin at one desired place. Otherwise, the

failure could start at diverse locations where the material is statistically the weakest, which could cause
Table 1

Specimen dimensions and experimental results

No. b (mm) D (mm) L (mm) P (N) rN (MPa)

Small tensile

specimens

1 25.40 6.35 15.88 241.09 1.49

2 25.40 6.35 15.88 205.60 1.27

3 25.40 6.35 15.88 249.99 1.55

4 25.40 6.35 15.88 246.43 1.53

5 25.40 6.35 15.88 237.27 1.47

6 25.40 6.35 15.88 204.30 1.27

Medium tensile

specimens

1 25.40 43.94 109.85 739.29 0.68

2 25.40 43.94 109.85 662.34 0.61

3 25.40 43.94 109.85 689.92 0.64

4 25.40 43.94 109.85 755.31 0.70

5 25.40 43.94 109.85 670.35 0.62

6 25.40 43.94 109.85 729.51 0.67

7 25.40 43.94 109.85 788.22 0.72

8 25.40 43.94 109.85 711.27 0.65

9 25.40 43.94 109.85 690.81 0.63

10 25.40 43.94 109.85 640.10 0.59

Large tensile

specimens

1 25.40 304.80 762.00 1842.89 0.24

2 25.40 304.80 762.00 1988.80 0.26

3 25.40 304.80 762.00 1939.86 0.25

Compression 1 25.40 43.94 109.85 224.15 0.92

2 25.40 43.94 109.85 202.50 0.83

3 25.40 43.94 109.85 229.20 0.94
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Fig. 3. A typical load–dCMOD curve in the tensile fracture test.
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a Weibull-type size effect (Weibull, 1939, 1951; Ba�zzant and Planas, 1998; Ba�zzant, 2002). Separation of

this size effect from the deterministic energetic size effect would complicate test evaluation and cause

ambiguity.

2. Since a light foam such as Divinycell 100 has a smaller strength in compression than tension, significant
compressive stresses (which can cause collapse of foam cells) need to be avoided. Therefore, specimens

with loads applied in compression or with a ligament that is subjected to a large bending moment, for

example the three-point bend tests, wedge splitting tests or compact tension tests (which are often con-

sidered more convenient), need to be avoided. Furthermore, for the same reason, the edge-notched ten-

sion specimens adopted here should not be free to rotate at ends or else a significant bending moment

could be induced in the ligament. To minimize this bending moment, the ends need to be restrained

against rotation even though the redundancy of restraint complicates evaluation.
3. Type I asymptotic matching law for size effect with large cracks and redundant supports

The size effect is defined as the dependence of the nominal strength, rN ¼ Pmax=bD, as function of the

characteristic specimen size (or dimension) D (here taken as the specimen width). Thus the nominal strength
is a parameter of the maximum load (load capacity) having the dimension of stress. In plastic limit analysis

as well as elasticity with a strength limit, rN is in general independent of D, which is obvious from the fact

that the mathematical formulation of these theories contains no material characteristic length. Micro-

structural inhomogeneities, such as the cells in a foam, as well as the finiteness of the fracture process zone

(FPZ), must obviously be reflected in a finite material characteristic length, which must inevitably cause a

size effect unless the structural dimensions are far larger than this length.

The size effect is best visualized in a plot of log rN versus logD; see Fig. 4. Now it should be noted that if

the foam behaved in a ductile manner, following the theory of plasticity with no size effect, the size effect
plots in Fig. 4 would have to be horizontal. The fact they are not proves that there is a size effect, in fact a

very strong size effect (strong on the scale of the experiments).

Until recently, all the size effects were attributed to the randomness of strength as explained by the

Weibull statistical theory. But note that if the nominal strength obeyed Weibull theory, the plot of log rN
Fig. 4. Results of size effect tests of nominal strength of geometrically similar prismatic Divinycell H100 foam specimens with similar

one-sided notches subjected to tension.
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versus logD, corresponding to the typical values of Weibull modulus, would have to be a straight line of a

slope equal to �2=m where m is the Weibull modulus characterizing the coefficient of variation of local

material strength. Since its value is typically between 15 and 30, this straight line would have to have a slope

between )0.03 and )0.07. The size effect observed (Fig. 4) is much stronger than that, overpowering any
possible statistical size effect. Moreover, the use of Weibull theory is justified only if the failure is triggered

by a single microscopic defect occurring randomly within a large volume, while in our case any significant

defect must lie very near the tip of notch of crack (in detail, see Ba�zzant, 2002). So the mean size effect must

be deterministic (the statistical variation about the mean is another matter).

Three types of deterministic (energetic) size effect must be distinguished (Ba�zzant, 2002). Type I is caused
by relatively large notches or fatigued (stress-free) cracks formed prior to maximum load, while Type II

occurs at crack initiation and is caused by a relatively large FPZ. Type III is caused by large stable crack

growth in structures of initially negative geometry; it is quite similar to Type II and will not be considered
here. In this section, we consider Type I.

If the tensile failure of the foam obeyed linear elastic fracture mechanics (LEFM), the logarithmic size

effect plot would have to be a straight line of downward slope )1/2, shown in Fig. 4. The results are very

close to that line, which means that, on the scale of the tests (and of course on larger scales), the material

behaves in an almost brittle manner. The term �brittle� is understood as the adherence to LEFM, while the

term �quasibrittle� refers to nonlinear cohesive softening (nonductile) fracture with a large FPZ, deviating

from LEFM (on the other hand the term �ductile fracture� refers to cohesive plastic, or nonsoftening,

fracture behavior, in which most of the nonlinear zone surrounding the crack tip is plastically yielding and
the softening FPZ is still very small).

According to the size effect method of measuring nonlinear fracture properties (Ba�zzant and Pfeiffer,

1987; Ba�zzant and Kazemi, 1990; Ba�zzant and Planas, 1998), the location in Fig. 4 of the asymptote of slope

)1/2 determines the fracture energy Gf of the material, and the rate at which this asymptote is approached

determines the effective size of the FPZ, cf , representing the distance from the actual crack tip to the tip of

an equivalent LEFM crack, which lies roughly in the middle of the FPZ and can be precisely defined as the

tip location that gives the best LEFM fit of the actual size effect curve. Based on Gf and cf , one can also

determine the fracture toughness and the critical crack-tip opening displacement:
Kc ¼
ffiffiffiffiffiffiffiffiffiffi
E0Gf

p
; dCTOD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Gfcf=E0

p
=p ð1Þ
where for plane stress E0 ¼ E ¼ Young’s modulus, and for plane strain E0 ¼ E=ð1� m2Þ, m¼Poisson�s ratio;
dCTOD is a material length parameter introduced for fracture of metals by Cottrell (1963) and Wells (1961).

Although the most general derivation of the size effect method can be given on the basis of asymptotic
expansion of the J -integral, let us sketch the brief and simple derivation from equivalent LEFM presented

in Ba�zzant and Planas (1998) and extended in Ba�zzant and Kazemi (1990) (see also Ba�zzant and Planas, 1998;

Ba�zzant, 2002). The use of equivalent LEFM has the advantage of providing an approximate dependence of

the size effect law parameters on the geometry. The energy release rate in LEFM may always be expressed

as
G ¼ K2
I =E

0 ¼ r2
NgðaÞD=E0 ð2Þ
where a ¼ a=D ¼ relative crack length, a¼ actual crack length, gðaÞ ¼ ½kðaÞ�2 ¼ dimensionless energy re-

lease function of relative crack length a, kðaÞ ¼ KI=rND ¼ dimensionless stress intensity factor, and

KI ¼ actual stress intensity factor (we consider only mode I). In the present case, the fracture geometry is

positive (i.e., the derivative g0ðaÞ > 0), and in that case the FPZ at maximum load must still be attached to

the notch tip and the crack begins to propagate at decreasing load. So the maximum load occurs as soon as

the crack propagation condition G ¼ Gf is attained. This yields for the nominal strength rNu ¼ rN at
maximum load the well-known general LEFM expression:
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rNu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0Gf=gðaÞD

p
ð3Þ
Since the FPZ at maximum load is still attached to the notch tip, we may use the approximation a ¼ a0 þ cf
or
a ¼ a0 þ h with a0 ¼ a0=D; h ¼ cf=D ð4Þ
where a0 is the length of notch or preexisting traction-free crack; cf ¼material constant � half-length of the

FPZ (Ba�zzant and Kazemi, 1990; Ba�zzant and Planas, 1998).

The size effect for geometrically similar specimens (i.e., specimens for which a0 ¼ constant) could be

simply described by substituting a ¼ a0 þ h into (3). However, such an approximation would be valid only
for large sizes D because for small enough D the argument of gðaÞ becomes larger than the range of a for

which gðaÞ is defined. To find a size effect law applicable for all sizes, we write an asymptotic expansion

in terms of 1=D;
gðaÞ ¼ gða0 þ cf=DÞ ¼ gða0Þ þ g0ða0Þcf=Dþ ð� � �Þ=D2 þ � � � ð5Þ
Truncating it after the second term, we get from (3) the size effect law proposed by Ba�zzant (1984) and
Ba�zzant and Kazemi (1990):
rNu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0Gf

½gða0Þ þ g0ða0Þcf=D�D

s
¼ rN0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D=D0

p ð6Þ
in which,
rN0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGf

g0ða0Þcf

s
; D0 ¼ cf

g0ða0Þ
gða0Þ

ð7Þ
D0 represents the transitional size delineating the brittle behavior from nonbrittle (ductile) behavior and

corresponds to the intersection of the asymptotes in Fig. 4; D0 and rN0
are constant because, owing to

geometric similarity, a0 is a constant for all the specimens tested. The ratio b ¼ D=D0 is called the brittleness
number (Ba�zzant and Planas, 1998); b � 1 means a very brittle response, close to LEFM, and b � 1 means

a very ductile response. To be able to identify the material fracture parameters from size effect tests, the

range of b must be sufficiently broad (in this regard, note that variation of the ratio g0ðaÞ=gðaÞ due to

changes in geometry, e.g., the relative notch depth, helps to increase the range of b).
The truncation of (5) after the second asymptotic term has been lucky since it happens to yield a law

approximately applicable through the entire size range. The reason is that, by chance, it happens to produce

a so-called �asymptotic matching� formula––a smooth formula that has the correct asymptotic properties at

all extremes, i.e., not only for D ! 1 but also for D ! 0. It can be shown (most rigorously on the basis of
the cohesive crack model) that the limit of rN for D ! 0 must be a positive constant, rN0

, and that this

constant must be approached linearly, i.e.,
rN � rN0
� j1D for D ! 0 ð8Þ
where j1 is a positive constant. By luck, the law (6) is the simplest formula satisfying this small-size

asymptotic condition. However, if more than two terms of the large size asymptotic expansion were re-

tained, the small-size asymptotic condition would be violated (therefore, a different approach must be taken

if a more accurate size effect law is desired; Ba�zzant, 2002, Section 9.7).

Because the end supports of the specimen are redundant (i.e., statically indeterminate), function gðaÞ
cannot be taken directly from handbooks. This aspect was handled for kink bands in fiber composites in a
simplified way (Ba�zzant et al., 1999). Here a new approach that is exact within the framework of equivalent

LEFM will be formulated.
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Due to the redundancy provided by the rotational restraints at the ends, the axial load resultant Pmax

shifts when the specimen size is increased. In other words, the eccentricity e of the maximum axial load with

respect to mid-thickness must be a function of a. To calculate the function eðaÞ, we use the condition of a

vanishing relative rotation between the specimen ends:
D/ ¼ PeCMM þ PCPM ¼ 0 ð9Þ
where Pe is the bending moment; CMM ;CPM are the compliances of the cracked specimen which can be

calculated from the a-dependence of the dimensionless stress intensity factors kMðaÞ ¼ KMMbD3=2=M and

kP ðaÞ ¼ KPPb
ffiffiffiffi
D

p
=P , where KMM and KPP are the actual mode I stress intensity factors due to unit bending

moment M and to unit axial force P applied at mid-thickness (i.e., at a ¼ 1=2), respectively. Based on the

energy relations of LEFM (Eq. (3.5.18) in Ba�zzant and Planas, 1998),
CPMðaÞ ¼
12

bE0D

Z a

0

kP ða0ÞkMða0Þda0; CMMðaÞ ¼
12L
bE0D3

þ 72

bE0D2

Z a

0

½kMða0Þ�2da0 ð10Þ
where the term 12L=bE0D3 L represents the bending compliance of a specimen with no crack and no notch

(L ¼ specimen length), and the integrals represent the additional compliances due to the notch and the

crack. According to the well-known expressions for the stress intensity factors for the present specimen

geometry (Tada et al., 1985),
kP ðaÞ ¼
ffiffiffiffiffiffi
pa

p
ð1:122� 0:231aþ 10:55a2 � 21:71a3 þ 30:38a4Þ ð11Þ

kMðaÞ ¼
ffiffiffiffiffiffi
pa

p
ð1:122� 1:40aþ 7:33a2 � 13:08a3 þ 14:0a4Þ ð12Þ
According to the principle of superposition, the dimensionless stress intensity factor and the energy release

rate caused by a combination of bending moment Pe and centric axial force P is
kðaÞ ¼ kP ðaÞ þ 6ðe=DÞkMðaÞ; gðaÞ ¼ ½kðaÞ�2 ð13Þ
Solving e from (9), we thus get
gðaÞ ¼ kP ðaÞ
�

� 6CPMðaÞ
CMMðaÞD

kMðaÞ
�2

ð14Þ
4. Analysis of Type I size effect test results for tensioned specimens

The known functions kP ðaÞ and kMðaÞ can now be used to calculate the energy release function and its

derivative; gða0Þ ¼ 2:19, g0ða0Þ ¼ 8:43 where a0 ¼ 0:4 (Section 2). Then one may use the size effect law

equations (6) and (7) to identify Gf and cf by means of optimum fitting of the data points in Fig. 4. These

equations can be easily fitted to the test data by either nonlinear optimization (using, e.g., the Levenberg–

Marquardt algorithm) or linear regression. The latter is made possible by rearranging Eq. (6) to an ex-

pression for r�2
N as a function of D, which represents a linear regression plot (Fig. 5). The optimum fit, in the

least-square sense, is shown by the curve in Fig. 4. From the optimum values of D0 ¼ 3.18 mm and rN0
¼

2.48 MPa, and knowing Gf ¼ r2
N0
D0kða0Þ2=E0, cf ¼ kða0ÞD0=2k0ða0Þ, one can identify Gf , cf and from these

values then the other fracture properties. The results for the present foam are
Gf ¼ 0:49 N=mm; cf ¼ 0:83 mm; Kc ¼ 6:53 N=mm
3=2

; dCTOD ¼ 0:10 mm ð15Þ
The values of Gf and f 0
t together characterize the initial slope of the softening curve of the cohesive model

(Guinea et al., 1997), which is all that is needed to calculate the maximum loads of structures. Knowledge of



Fig. 5. Linear regression based on asymptotic matching formula (6).
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these material parameters makes it possible to analyze the size effect due to fracture in the core of a

sandwich plate by equivalent LEFM, or cohesive crack model, or crack band model.

The size effect law (6) applies only if either a large notch or a large fatigued (stress free) crack (or damage

zone) develops before the maximum load. When there is neither a large notch nor a preexisting large crack

(or damage zone) with a reduced stress, the response of the foam tends to be ductile and, at larger strain,
locking (Gibson and Ashby, 1997). This is a major difference from quasibrittle material such as concrete, in

which a large tensile cracking zone develops and causes stress redistribution which again leads to size effect.

This size effect is of a very different type and, unlike the size effect associated with large cracks, approaches

the Weibull statistical size effect at very large sizes (Ba�zzant, 2002).
5. Size effect tests of V-notched specimens in compression

Compressive tests of V-notched specimens of Divinycel H100 foam have been also conducted to clarify

the nature of cell collapse. The test results were found to exhibit no size effect. This means that the stress

concentration at the tip of the V-shaped notch could not have caused any strain-softening response. Rather,

the cells of the foam must have collapsed plastically, with no stress reduction. Therefore, the usual plasticity

type analysis is justified for the compressive failure of vinyl foam (this conclusion, though, is probably not
true for foams made from very brittle materials).

Furthermore, it was observed that when the notch angle is not wide enough, the opposite faces of the

V-notch come into contact and produce a locking behavior in which the compressive stress magnitude

increases. This is the same behavior as seen in compression specimens with no notches nor preexisting

cracks (Gibson and Ashby, 1997). Empirically, the minimum angle to prevent closing of the notch near its

tip is about 90� (Fig. 6).
6. Analysis of Type I three-point-bend size effect data of Zenkert and Bäcklund (1989)

These size effect test data were also fitted by Eq. (6), as shown in Fig. 7. The cellular material that they

used was a slightly heavier closed-cell vinyl foam with cell size about 0.3 mm (Divinycell H200, supplied by
Diab-Barracuda AB in Laholm, Sweden). These tests used three-point bend beams with the same thickness
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Fig. 7. Fit of Zenkert and B€aacklund�s (1989) for three-point bend beams by Ba�zzant�s size effect law (1984) (solid line). Dashed line:
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b ¼ 30 mm, the same span/depth ratio, L=D ¼ 4, and the same ratio of notch length to specimen depth,
a ¼ 0:5, but different beam depths D ¼ 30, 60 and 120 mm.

Two series of size effect tests, labeled A and B, were performed by using specimens cut from two different

blocks of the foam and subjected to slightly different temperature conditions. There were appreciable

differences between these two series, which must be due to differences in temperature conditions as well as
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notoriously high randomness of foam properties and perhaps uncontrollable differences in specimen

manufacture. The randomness is documented by very high scatter of the fracture toughness values, KIc ,

measured by Zenkert and B€aacklund on specimens cut from different blocks of material. After measuring the

peak loads, they calculated the toughness according to LEFM as KIc ¼ r1c

ffiffiffiffiffiffi
pa

p
f ða=DÞ, with f ða=DÞ, given

by a handbook, and reported GIc ¼ K2
Ic
=E0 ¼ 0:50, 0.59, 0.71 N/mm for D ¼ 30, 60, 120 mm in test series A,

and 0.84, 1.09, 1.38 N/mm in test series B, respectively (note that the ASTM requirement for LEFM

validity, namely that each of the crack, ligament and cross section dimension must be longer than

2:5ðKIc=ryÞ2, was not fully satisfied).

The specimens of series A had generally much lower maximum loads than the counterpart specimens of

series B. The values of Gf and cf for Zenkert and B€aacklund�s data can now be again easily calculated by

optimum fitting of the size effect law (6) with (7) to the nominal strength data. The results are:
Gf ¼ 0:74 N=mm; cf ¼ 3:5 mm for series A ð16Þ

Gf ¼ 1:38 N=mm; cf ¼ 3:5 mm for series B ð17Þ
when the fits are optimized forcing the cf value to be the same for both series (Fig. 7 bottom). If both cf and
Gf are allowed to be different for each series, the optimum fits are only slightly better (see Fig. 7 top). On the

other hand, if both cf and Gf are forced to be the same for both series, the optimum fits get much worse.
7. Type II asymptotic matching law for size effect at crack initiation in holed panels

Specimens of a different type––flat panels with central holes instead of notches––were used in fracture

tests of Fleck et al. (2001) and Olurin et al. (2001); see Fig. 8. The holed specimens fail at the initiation of

macroscopic (continuous) crack from the hole. A finite FPZ, of a size denoted as 2cf , must form before a

crack can propagate. Therefore the equivalent LEFM crack at the initiation of propagation has approxi-
mately the length cf .

The problem is mathematically similar to the initiation of a compression kink band from a hole in a fiber

composite panel, which was analyzed in Ba�zzant et al. (1999) (the main difference was that, in contrast to the

tensile cohesive stress in crack, the kinking of axial fibers causes the axial compressive stress to drop to a

certain finite residual value rather than to zero). Here we present a more general analysis of asymptotic

matching type.

We start again from the general relation (3) in which gðaÞ is now replaced by the dimensionless energy

release function gða; qÞ with two arguments, a ¼ 2a=D and q ¼ 2R=D; D ¼ panel width, R ¼ radius of the
hole; and the crack length a is measured from the center of the hole; see Fig. 8. When c ¼ a� R � R, the
stress intensity factor KI must obviously be nearly the same as that for a normal surface crack of depth c in
an elastic half-plane, which is KI ¼ 1:12r

ffiffiffiffiffi
pc

p
. This implies that gða; qÞ � 1:122pða� RÞ=D when c � R.

One might think that the size effect would be captured simply by substituting
a ¼ a0 þ h with a0 ¼ 2R=D; h ¼ 2ða� RÞ=D ð18Þ

However, like for Type I, the resulting size effect formula would be applicable only for very large sizes
because a exceeds its physical range for small enough D. Now we must realize that, since the equivalent

LEFM is realistic only asymptotically for large enough D, function gða; qÞ may be replaced by some other

more convenient function with the same large-size asymptotic properties. To find the convenient function,

we begin, similar to (5), with the asymptotic expansion in terms of 1=D:
gða; qÞ ¼ g0ða0; qÞ
2cf þ g00ða0; qÞ 4c2f

2
þ � � � ð19Þ
D 2! D



α

Fig. 8. Top: Dimensionless energy release function gðaÞ for isotropic specimens with centric holes of different radii (the solid curve

represents function gðaÞ for a specimen with a centric horizontal crack of length 2a). Bottom: Corrected energy release function with a

finite slope at crack initiation from the hole (heavy lines), compared to F€uuhring�s solution (thin lines).
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Here we omitted the first term because gða0; qÞ ¼ 0 (due to the absence of any notch or preexisting traction-

free macroscopic crack). For this reason, we cannot truncate the expansion after the linear term, like we did

for Type I. So we truncate it after the quadratic term and substitute it into (3). Thus we obtain
rNu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0Gf

2cfg0ða0; qÞð1� 2nÞ

s
ð20Þ
with
n ¼ c0
D
; c0 ¼ cf

ð�g00ða0; qÞÞ
2g0ða0; qÞ

ð21Þ
Here we include the minus sign in the definition of n because, in all the cases where the size effect occurs,

g00ða0; qÞ < 0 (while g0ða0; qÞ > 0) where the primes denote partial derivatives with respect to a. These are
the cases in which the profile of tensile stress acting before fracture decreases in the direction away from the
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surface (if it increases, then g00 > 0, in which case the crack grows stably and the maximum load does not

occur at crack initiation but later).

Unfortunately, unlike Type I, Eq. (20) cannot describe the size effect through the full range of D 2 ð0;1Þ
because, for small enough D, 1� 2n becomes negative and rN imaginary. To recover from this snag, we
must realize that only the first two large-size asymptotic terms of (20) are realistic. Any convenient function

that shares these two terms is equally good asymptotically for D ! 1. Aware of this point, we try the

following asymptotic approximations verified by Taylor series expansions in terms of n ¼ c0=D:
ð1� 2nÞ�1=2 � 1þ n � ð1þ rnÞ1=r ðfor n � 1Þ ð22Þ
where r can be an arbitrary positive empirical parameter. From (20) we thus obtain:
rNu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0Gf

2cfg0ða0; qÞ

s
qðDÞ; qðDÞ ¼ ð1þ rnÞ1=r ð23Þ
This formula along with (21), which is second-order accurate in 1=D for D ! 1, has the general form of the

size effect law for failure at crack initiation, derived for concrete in Ba�zzant and Li (1996) and extended by

the addition of empirical parameter r in Ba�zzant (1998) (see also Ba�zzant and Planas, 1998; and Ba�zzant,
2002). Eq. (23) with (21) is also analogous to the formula derived in Ba�zzant et al. (1999, Eq. (54)) for the
propagation of compression kink bands with a finite residual stress in orthotropic fiber composites.

Eq. (23) overcomes the problem with imaginary rN for small enough D. However, the asymptotic be-

havior for D ! 0 is still not entirely satisfactory because rN ! 1. This asymptotic behavior (shared by the

famous Hall–Petch formula for the effect of crystal size on the yield strength of a polycrystalline metal)

might seem acceptable because specimen size D less than the inhomogeneity size (cell size in foam) is im-

possible. However, from the viewpoint of the cohesive crack model, such small-size asymptotic behavior is

not right. Yet it can be remedied easily. We simply replace D with (D+ constant) in the definition of n,
which means that expression (21) for n, to be used for function qðDÞ in (23), is now replaced by
n ¼ c0
D
; c0 ¼

ð�g00ða0; qÞÞ
2g0ða0; qÞ

cf
gcf þ D

ð24Þ
where g is a dimensionless empirical positive constant, which will be here taken as g ¼ 1 for lack of suf-

ficiently extensive test data. Obviously, (24) will make the small-size asymptotic properties conform to (8).
At the same time, the first two terms of the large-size asymptotic approximation will remain unchanged.

This may be verified by the following asymptotic approximations, second-order accurate in x ¼ cf=D:
rNu / ð1þ rnÞ1=r ¼ 1

�
þ srcf
gcf þ D

�1=r

¼ 1

�
þ srx
1þ gx

�1=r

¼ 1þ ðgþ srÞx
1þ gx

� �1=r

� 1þ ðsþ g=rÞx
1þ ðg=rÞx � 1

h
þ s
�

þ g
r

�
x
i

1
�

� g
r
x
�
� 1þ sx ¼ 1þ scf

D
ð25Þ
where s is a positive constant.
8. Analysis of test data for holed panels

Olurin et al. (2001) and Fleck et al. (2001) conducted a rather extensive series of tensile fracture tests on

Divinycell panels of width D in the range (10 mm, 100 mm), and 2R=D in the range of (0, 0.6), with the

length L ¼ 1:5D and the thickness b ¼ 10 mm. The geometry of the test is shown in Fig. 8 and the measured
data are the points in Fig. 9 showing the dependence of the nominal strength rNu and of the net average



Fig. 9. Fleck et al.�s (2001) test data for holed panels, plotted (a) in terms of the average tensile stress rNu applied at ends, and (b) in

terms of the average net cross section stress (the solid curves show the fits by the present theory).
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strength rnet ¼ rNuD=ðD� 2RÞ on the specimens size D and relative hole size q ¼ R=2D, where rNu is the

average tensile stress applied at the specimen ends (Fig. 8). Let us try to exploit these data for checking the

present theory. In principle, it must be possible to describe these data by (21) with (24). The function gðaÞ
may be expected to be approximately the same as that for an infinite strip with a hole, for which it is

presented in handbooks (Tada et al., 1985; Murakami, 1986; see Fig. 8). The available function, however, is

found to have incorrect asymptotic properties for a ! a0, yet these properties are crucial for the present

asymptotic approach. Instead of gðaÞ, the handbooks give for KIðaÞ formulae that satisfy the obvious

asymptotic conditions limðdKI=daÞ ¼ 1 for a ! a0 as well as limKI ¼ 0 (which implies that
lim gðaÞ ¼ limK2

I =E
0 ¼ 0). However, it is also necessary that
0 < lim
a!a0

g0ðaÞ < 1; lim
R=D!0

½ lim
a!a0

g0ðaÞ� ¼ 1:122p; �1 < lim
a!a0

g00ðaÞ < 0 ð26Þ
These conditions may be easily proven by noting that the scale transformation of coordinates centered at

the crack mouth making the ratio a=ða� RÞ arbitrarily small produces the same situation as a crack ini-

tiating from a planar surface and, when both R=D ! 0 and a=ða� RÞ ! 0, the same situation as a crack

initiating from the surface of an elastic halfspace. For that situation, KI ¼ 1:12 rN
ffiffiffiffiffi
pc

p
with c ¼ a� a0 ¼

crack length, which implies that gðaÞ ¼ K2
I =r

2D ¼ 1:122pc=D and g0ðaÞ ¼ 1:122p < 1. The handbook ex-

pressions violate this condition, reflected in (26), giving incorrectly lim g0ðaÞ / limK2
I ¼ 1 (see Fig. 8 where

the correct initial slopes of each curve for small enough R=D are marked). They also incorrectly give

lim g00 ¼ �1. These discrepancies are no big problem for most engineering applications but are a fatal fault

for the present analysis based on asymptotic matching.

It may nevertheless be assumed that the handbook formulae are good enough for not too short cracks.

So, it has been tried to devise a correction that would satisfy conditions (26) and fit the existing formula

very closely except in the initial portion a� a0 < 0:05 of each curve. After some trials, the following smooth

formula has been adopted for this purpose
gðaÞ ¼ ð1� aÞ�1
X5

n¼1

bnða� a0Þn þ b6f1� ½1þ b7ða� a0Þ��3g ð27Þ
(see Fig. 8) and has been optimally fitted (using the Levenberg–Marquardt optimization algorithm) to the
curve of F€uuhring�s (1973) formula given by Murakami (1986) for each fixed R=D, ignoring the points for



Table 2

Parameters controlling the curve match of gðaÞ
a0 ¼ 0:1 a0 ¼ 0:2 a0 ¼ 0:4 a0 ¼ 0:6

a 2.13 3.24 7.42 16.71

b )5.09 )10.68 )36.74 )124.78
c 10.52 27.04 126.57 682.72

d )11.19 )35.02 )234.68 )2248.45
e 5.22 18.49 175.54 3111.67

f 0.14 0.24 0.34 0.28

g 197.09 93.71 52.59 49.64

g0ða0Þ 86.92 71.52 65.22 83.77

g00ða0Þ )66 663 )25 307 )11 200 )8754
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gðaÞ < g0=2 where g0 ¼ value of gðaÞ for a equal to the actual a0 but R ¼ 0 (for the values of bn for various
q ¼ 2R=D, see Table 2). This new dimensionless energy release function (27) satisfies the asymptotic in-

equalities (26), although the limiting values g0ða0Þ and g00ða0Þ are doubtless still in error.

With the first and second derivatives at a0 for each R=D ensuing from (27), the fit of all the data of

Fleck et al. (2001) for various D and R has been simultaneously optimized with the Levenberg–Marqardt

algorithm; see the curves and the data points plotted in various coordinates in Figs. 9 and 10. The plots in

Fig. 10a–c are based on rearranging (21) with (24) as follows:
rNu

ffiffiffiffiffiffi
2g0

p
¼

ffiffiffiffiffiffiffiffiffiffi
E0Gf

cf

r
1

�
þ ð�g00Þ

2g0
rcf
D

�1=r
ð28Þ
or
Y ¼ AX þ C ð29Þ
where
X ¼ rð�g00Þ=2g0D; Y ¼ ðrNu

ffiffiffiffiffiffi
2g0

p
Þr; A ¼ cfC; C ¼ ðE0Gf=cfÞr=2 ð30Þ
in which we use the abbreviated notations g0 ¼ g0ða0; qÞ, g00 ¼ g00ða0; qÞ. Another instructive linear plot is

obtained by further rearranging (29) as follows:
Y 0 ¼ A0X 0 þ C0 ð31Þ
where
X 0 ¼ Y ; Y 0 ¼ c1�r=2
f X ; A0 ¼ ðE0GfÞ�r=2

; C0 ¼ �c�r=2
f ð32Þ
The plots in Fig. 10a–c use coordinates for which the data for all q ¼ 2R=D should ideally lie on one and the

same curve. The curved plot in Fig. 10a is based on (28) and has the statistical advantage that the data
points are less crowded together than in the other plots. The plots in Fig. 10b and c are linear, representing

linear regressions based on (29) and (31).

The linear plot in Fig. 10b, based on (29), can be used to obtain the optimum material parameters from a

sequence of linear regressions. One needs to choose a series of r values, and for each r the linear regression
of the data then yields A and C as well as their statistics. From A and C one can calculate cf ¼ A=C, and
then E0Gf ¼ C2=r=cf .

In linear regression, the slope A or A0 is generally obtained with a greater accuracy than the intercept C or

C0. Since (for a fixed r and E0) the slope A0 depends only on Gf , the linear plot in Fig. 10c, therefore, directly
reveals the statistical scatter of Gr=2

f (whose coefficient of variation is about r=2 times the coefficient of

variation of Gf ).



Fig. 10. Optimum fits of Fleck et al.�s (2001) test data for holed panels: (a) by Eq. (28), (b) by Eq. (29), (c) by Eq. (31).
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The values of Gf , cf and r corresponding to the optimum fits are shown in each figure. In this case,

however, these values should not be regarded as good estimates of the material properties, because (a)

unnotched specimen failing at crack initiation are generally much less suitable for determining fracture

energy than notched specimens because the results are much less sensitive to the value of Gf ; and, (b)

because, more seriously, the present optimum fits have been obtained with rather inaccurate estimates of

g0ða; qÞ and g00ða; qÞ.
Therefore, the present analysis of Fleck et al.�s (2001) data merely proves that a formula derived from

fracture mechanics can describe the nominal strength of prismatic specimens of different sizes with holes of

different sizes. It is not proven that accurate predictions would be impossible if Gf and cf were determined

by other means (from notched tests). Examining this point would require solving function gða; qÞ with

correct asymptotic properties.

For the range of Fleck et al.�s (2001) data, the values of h ¼ ða� a0Þ=R do not go out of the range ða0; 1Þ,
and so it is actually possible to also fit the data directly with the original formula (3) in which a ¼ a0 þ cf .
The fits of the data in Fig. 10 with formula (3), obtained easily with a nonlinear optimization algorithm, are
slightly worse than those shown in Figs. 9 and 10 and the optimum values of Gf and cf are rather different
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(though not different in terms of the order of magnitude). Doubtless the reason is that (3) is not an

asymptotic matching formula, i.e., a formula with a realistic asymptotic behavior for very small sizes.

The smallest holes in Fleck et al.�s (2001) specimens have a radius R of the same size as the size of the

FPZ. In that case, in principle, Gf and cf could depend on R. To check it, it was assumed that
Gf ¼ G1 þ G2Rn and cf ¼ c1 þ c2Rn (in which G1, G2, c1, c2 and n are constants), and the data were fitted

again. However, the optimum fits achievable did not become any better. It follows that the effect of cur-

vature of the surface bordering the FPZ is not significant.

It must be admitted that a certain error in the present analysis arises from taking function gða; qÞ the
same as for an isotropic material. In reality, a Divinycell foam exhibits a slight orthotropy due to the

gravity effect during casting (which was considered in Brocca et al. (2001), based on the generalization of

LEFM by Bao et al., 1992). Although the consideration of orthotropy would probably alter this function

somewhat, the difference appears to be insignificant compared to the inevitable scatter of test data.
9. Verification by simulation of tensile fracture test with cohesive crack model

Hillerborg et al. (1976), Hillerborg (1985) and Petersson (1981) analyzed mode I cohesive fracture by

condensing out from the structural stiffness matrix all the nodes other than those on the crack line and at

the load point. In their approach, one begins by calculating the compliance matrix for the crack surface

nodes and the load point (see also Ba�zzant and Planas, 1998). The governing equation is then obtained from
the crack compatibility condition which, in dimensionless form (Zi and Ba�zzant, 2003), reads:
�wwðnÞ ¼ ��DD
Z a

a0

�CCðn; n0Þ�rrðn0Þdn0 þ �DD�rrN
�CCN ðnÞ ð33Þ
which must be coupled with the condition that the stress intensity factor at the cohesive crack tip KI ¼ 0;

here n ¼ x=D ¼ dimensionless coordinate, �DD ¼ rfD=Ewf ¼ D=2lch dimensionless size (lch ¼ EGf=f 02
t ¼

Irwin�s (1958) characteristic length), �ww ¼ w=wc ¼ dimensionless crack opening displacement, wc ¼ critical
opening displacement at which cohesive stress attains zero, �rr ¼ r=f 0

t ¼ dimensionless shear stress, f 0
t ¼

material strength, a0 ¼ a0=D ¼ dimensionless length of notch, �CCN ¼ CNE=D ¼ dimensionless compliance

corresponding to the nominal stress �rrN ¼ rN=f 0
t ,

�CC ¼ EbC ¼ compliance for the stress in FPZ, i.e., �ww at n
caused by unit stress �rr at n0 (CN and C ¼ actual compliances).

In Hillerborg and Petersson�s approach, the load and load–point displacement are solved from the crack

compatibility condition of the type of (33) (coupled with the condition KI ¼ 0) for cohesive crack tip placed

in a crack line node, one after another. This means that the entire history of displacement distributions for

increasing loads must be followed for each specimen size even though only the peak load is needed for size
effect studies.

Li and Liang (1993) and Li and Ba�zzant (1994) (in a discrete form), and Ba�zzant and Li (1995) (in a

continuous form), developed a procedure that is much more efficient for size effect studies (see also Ba�zzant
and Planas, 1998, Sec. 7.5.4) because it does not necessitate integrating the deformation history, allowing

the peak load to be calculated directly. Recently, this procedure, used initially for positive geometries, was

generalized for negative-positive geometries for which the energy release rate first decreases with crack

advance and later increases (Zi and Ba�zzant, 2003). In this approach, the problem of directly calculating rN

for various D is recast as an eigenvalue problem. The size D for which a given a corresponds to the peak
load is the eigenvalue of the following dimensionless homogeneous Fredholm integral equation (Ba�zzant and
Li, 1995):
�ww;aðnÞ þ �DD
Z a

a0

�CCðn; n0Þ�rr;�ww�ww;aðn0Þdn0 ¼ 0 ð34Þ
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This equation is linear when the softening stress–displacement law of the cohesive cracks is linear (i.e., when
�rr;�ww is constant). The dimensionless nominal strength is then obtained by
Fig. 11

experi

soften
�rrNu ¼
R a
a0
�ww;aðnÞdn

�DD
R a
a0
�CCN ðnÞ�ww;aðnÞdn

ð35Þ
Choosing a series of a values corresponding to cohesive crack tips successively placed into the crack line

nodes, one solves for each of them the eigenvalue �DD as well as the eigenmode �ww;a (approximated as a discrete

eigenvector) from a discrete approximation of (34). Knowing �DD and �ww;a, one may then simply evaluate �rrNu

from the discrete approximation of (35).

The tensile strength of the foam was determined from the tensile test without notch; f 0
t ¼ 3:1 MPa.

Measurements of the initial slope of the load–deflection curve of the fracture specimen furnished E ¼ 87:0
MPa and m ¼ 0.32. The fracture energy was then determined on the basis of (34) and (35) by optimum

fitting of the size effect data obtained from the present tests of edge-notched prismatic specimens in tension.

Then, noting that Gf ¼ wcf 0
t =2, the crack opening displacement wc at the intersection of the linearly soft-

ening the stress–displacement law (triangular softening law) with the displacement axis was evaluated as

wc ¼ 2Gf=f 0
t .

It is also instructive to have the entire diagrams of the dimensionless nominal stress versus the dimen-

sionless load–point displacement. Since the eigenvalue approach yields only the maximum loads and not
the entire load–deflection diagrams, these diagrams had to be calculated using the Hillerborg–Petersson

type approach; see the graphs in Fig. 11a. For the case of geometric similarity, and with the use dimen-

sionless coordinates, the initial slopes of all the calculated diagrams in this figure must be the same. As we

can see, they are indeed the same.

The calculated load–deflection curves in Fig. 11 explain the reason why the medium and large size

specimens failed immediately upon reaching the peak load. These failures cannot be blamed on poor

control of the test because the load–deflection diagrams for these specimens are seen to exhibit a sharp

snapback, i.e., a post-peak softening with a positive slope. In the case of snapback even a perfectly stiff
control of the load–point displacement cannot prevent instability. The fact that tensile notched specimen

large enough to obey LEFM must exhibit a snapback was established theoretically (Ba�zzant, 1987; Ba�zzant
and Cedolin, 1991, Chapter 12).
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10. Conclusions

1. A strong size effect in the closed-cell PVC foam (Divinycell H100) is experimentally demonstrated. It

agrees well with the size effect law proposed by Ba�zzant (1984), which is based on asymptotic matching
that describes a smooth transition between the asymptotic case of no size effect (characteristic of plas-

ticity or any theory whose failure criterion is solely expressed in terms of stress or strain) and the asymp-

totic case of size effect of linear elastic fracture mechanics (governed by energy release).

2. The size effect law permits the fracture energy and the effective fracture process zone length of foam to be

easily identified by measuring only the maximum loads of geometrically similar notched specimens of suf-

ficiently different sizes (the geometrical shapes can be dissimilar, albeit at the cost of less simple evaluation).

3. A suitable fracture test specimen for very light foam is a tensioned prism with one edge notch at mid-

length, fixed at the ends. This specimen fails purely by tensile fracture, while other specimens of light
foam, such a three-point bend beams, are plagued by simultaneous compression collapse of foam cells

at places of load application, which distorts the results.

4. Evaluation of the energy release function for this test specimen must take into account the effect of the

lateral shift of the axial load resultant caused by rotational restraints at specimen ends. This effect is eas-

ily captured by LEFM if the end rotations canceled by rotational restraint are calculated from the stress

intensity factor expression as a function of crack length.

5. Conclusions 1 and 2 are strengthened by analyzing recent Zenkert and B€aacklund�s (1989) test data for

the size effect on notched three-point bend specimens of a heavier foam (Divinycell H200). Fitting the
results with a size effect formula yields realistic values of the fracture parameters of this foam.

6. A closed-form formula of asymptotic matching type, bridging the equivalent LEFM solution and plas-

ticity solution (and similar to Ba�zzant et al.�s (1999) formula for kink-band failures in fiber composites), is

derived for long rectangular prismatic specimens of different widths, having holes of different diameter-

width ratios. It is shown that this formula can describe both the size effect and change of geometry effect

as recently measured on foam specimens by Fleck, Olurin and co-workers (2001). It cannot be claimed,

however, that the formula could actually predict the maximum loads of these specimens. This remains

unproven because the required asymptotic properties for a vanishing length of crack emanating from the
hole, which are crucial for the asymptotic matching philosophy, are not exhibited by the handbook so-

lution for the energy release function and are only crudely approximated by the modified energy release

function developed here.

7. Compressed foam specimens with V-shaped notches (with an angle wide enough to prevent the notch

faces from coming into contact) exhibit no size effect. This implies that the cell collapse at the tip of

the notch must be essentially a yielding process rather than a softening damage process.

8. Finite element computations based on the cohesive crack model (with the same local tensile strength as

obtained by independent tests) match the test results closely. This provides an independent verification of
the use of the size effect method for measuring the fracture properties of foam.

9. The results demonstrate that the current design practice, in which the tensile failure of foam is generally

predicted on the basis of strength criteria or plasticity, is acceptable only for small structural parts because

it misses the size effect and lead to fracture energy Gf that is close to that obtained by fitting the data with

the asymptotic formula. In the case of large structural parts, the size effect must be taken into account,

especially if the foam can suffer large fatigue cracks or large damage zones prior to critical loading to failure.
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